Multiobjective Evolutionary Optimization for Prototype-Based Fuzzy Classifiers

نویسندگان

چکیده

Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming online in a “one pass” manner for greater computation efficiency. However, such identified often lack optimality, resulting less precise boundaries, thereby hindering potential of systems. To address this issue, commonly adopted strategy is minimize training error models historical or alternatively iteratively intracluster variance clusters obtained via partitioning. This recognizes fact that ultimate driven positions space. Yet, simply minimizing may potentially lead overfitting does not necessarily ensure optimized attain improved outcomes. achieve better avoiding EISs, article presents novel multiobjective optimization approach, enabling obtain optimal involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced selecting suitable solution deploy from final nondominated set models. Systematic experimental studies carried out demonstrate effectiveness proposed approach improving EISs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary Multiobjective Optimization for Generating an Ensemble of Fuzzy Rule-Based Classifiers

One advantage of evolutionary multiobjective optimization (EMO) algorithms over classical approaches is that many non-dominated solutions can be simultaneously obtained by their single run. In this paper, we propose an idea of using EMO algorithms for constructing an ensemble of fuzzy rule-based classifiers with high diversity. The classification of new patterns is performed based on the vote o...

متن کامل

Evolutionary Multiobjective Optimization for Fuzzy Knowledge Extraction

− A new trend in the design of fuzzy rulebased systems is the use of evolutionary multiobjective optimization (EMO) algorithms. This trend is observed in various areas in machine learning. EMO algorithms are often used to search for a number of Pareto-optimal non-linear systems with respect to their accuracy and complexity. In this paper, we first explain some basic concepts in multiobjective o...

متن کامل

Fuzzy Optimality and Evolutionary Multiobjective Optimization

Pareto optimality is someway ineffective for optimization problems with several (more than three) objectives. In fact the Pareto optimal set tends to become a wide portion of the whole design domain search space with the increasing of the numbers of objectives. Consequently, little or no help is given to the human decision maker. Here we use fuzzy logic to give two new definitions of optimality...

متن کامل

Evolutionary Multiobjective Optimization Using a Fuzzy-based Dominance Concept

One aspect that is often disregarded in evolutionary multiobjective research is the fact that the solution of a problem involves not only search but decision making. Most of approaches concentrate on adapting an evolutionary algorithm to generate the Pareto frontier. In this work we present a new idea to incorporate preferences in MOEA. We introduce a binary fuzzy preference relation that expre...

متن کامل

Evolutionary Algorithms for Multiobjective Optimization

Multiple, often conflicting objectives arise naturally in most real-world optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolution-based methods have been used for multiobjective optimization for more than a decade. Meanwhile evolutionary multiobjective optimization has become established as a separat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Fuzzy Systems

سال: 2023

ISSN: ['1063-6706', '1941-0034']

DOI: https://doi.org/10.1109/tfuzz.2022.3214241